(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
cons(mark(X1), X2) →+ mark(cons(X1, X2))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X1 / mark(X1)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0', incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0', XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
active(pairNs) → mark(cons(0', incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0', XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active,
cons,
incr,
s,
take,
pair,
zip,
repItems,
tail,
proper,
topThey will be analysed ascendingly in the following order:
cons < active
incr < active
s < active
take < active
pair < active
zip < active
repItems < active
tail < active
active < top
cons < proper
incr < proper
s < proper
take < proper
pair < proper
zip < proper
repItems < proper
tail < proper
proper < top
(8) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
cons, active, incr, s, take, pair, zip, repItems, tail, proper, top
They will be analysed ascendingly in the following order:
cons < active
incr < active
s < active
take < active
pair < active
zip < active
repItems < active
tail < active
active < top
cons < proper
incr < proper
s < proper
take < proper
pair < proper
zip < proper
repItems < proper
tail < proper
proper < top
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
cons(
gen_pairNs:0':oddNs:mark:nil:ok3_0(
+(
1,
n5_0)),
gen_pairNs:0':oddNs:mark:nil:ok3_0(
b)) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, 0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b))
Induction Step:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, +(n5_0, 1))), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) →RΩ(1)
mark(cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
incr, active, s, take, pair, zip, repItems, tail, proper, top
They will be analysed ascendingly in the following order:
incr < active
s < active
take < active
pair < active
zip < active
repItems < active
tail < active
active < top
incr < proper
s < proper
take < proper
pair < proper
zip < proper
repItems < proper
tail < proper
proper < top
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
incr(
gen_pairNs:0':oddNs:mark:nil:ok3_0(
+(
1,
n1202_0))) →
*4_0, rt ∈ Ω(n1202
0)
Induction Base:
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, 0)))
Induction Step:
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, +(n1202_0, 1)))) →RΩ(1)
mark(incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
s, active, take, pair, zip, repItems, tail, proper, top
They will be analysed ascendingly in the following order:
s < active
take < active
pair < active
zip < active
repItems < active
tail < active
active < top
s < proper
take < proper
pair < proper
zip < proper
repItems < proper
tail < proper
proper < top
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
s(
gen_pairNs:0':oddNs:mark:nil:ok3_0(
+(
1,
n1784_0))) →
*4_0, rt ∈ Ω(n1784
0)
Induction Base:
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, 0)))
Induction Step:
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, +(n1784_0, 1)))) →RΩ(1)
mark(s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
take, active, pair, zip, repItems, tail, proper, top
They will be analysed ascendingly in the following order:
take < active
pair < active
zip < active
repItems < active
tail < active
active < top
take < proper
pair < proper
zip < proper
repItems < proper
tail < proper
proper < top
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
take(
gen_pairNs:0':oddNs:mark:nil:ok3_0(
+(
1,
n2467_0)),
gen_pairNs:0':oddNs:mark:nil:ok3_0(
b)) →
*4_0, rt ∈ Ω(n2467
0)
Induction Base:
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, 0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b))
Induction Step:
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, +(n2467_0, 1))), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) →RΩ(1)
mark(take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
pair, active, zip, repItems, tail, proper, top
They will be analysed ascendingly in the following order:
pair < active
zip < active
repItems < active
tail < active
active < top
pair < proper
zip < proper
repItems < proper
tail < proper
proper < top
(21) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
pair(
gen_pairNs:0':oddNs:mark:nil:ok3_0(
+(
1,
n4579_0)),
gen_pairNs:0':oddNs:mark:nil:ok3_0(
b)) →
*4_0, rt ∈ Ω(n4579
0)
Induction Base:
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, 0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b))
Induction Step:
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, +(n4579_0, 1))), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) →RΩ(1)
mark(pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(22) Complex Obligation (BEST)
(23) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
zip, active, repItems, tail, proper, top
They will be analysed ascendingly in the following order:
zip < active
repItems < active
tail < active
active < top
zip < proper
repItems < proper
tail < proper
proper < top
(24) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
zip(
gen_pairNs:0':oddNs:mark:nil:ok3_0(
+(
1,
n6995_0)),
gen_pairNs:0':oddNs:mark:nil:ok3_0(
b)) →
*4_0, rt ∈ Ω(n6995
0)
Induction Base:
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, 0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b))
Induction Step:
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, +(n6995_0, 1))), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) →RΩ(1)
mark(zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n6995_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(25) Complex Obligation (BEST)
(26) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n6995_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n69950)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
repItems, active, tail, proper, top
They will be analysed ascendingly in the following order:
repItems < active
tail < active
active < top
repItems < proper
tail < proper
proper < top
(27) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
repItems(
gen_pairNs:0':oddNs:mark:nil:ok3_0(
+(
1,
n9715_0))) →
*4_0, rt ∈ Ω(n9715
0)
Induction Base:
repItems(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, 0)))
Induction Step:
repItems(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, +(n9715_0, 1)))) →RΩ(1)
mark(repItems(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n9715_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(28) Complex Obligation (BEST)
(29) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n6995_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n69950)
repItems(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n9715_0))) → *4_0, rt ∈ Ω(n97150)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
tail, active, proper, top
They will be analysed ascendingly in the following order:
tail < active
active < top
tail < proper
proper < top
(30) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
tail(
gen_pairNs:0':oddNs:mark:nil:ok3_0(
+(
1,
n10949_0))) →
*4_0, rt ∈ Ω(n10949
0)
Induction Base:
tail(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, 0)))
Induction Step:
tail(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, +(n10949_0, 1)))) →RΩ(1)
mark(tail(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n10949_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(31) Complex Obligation (BEST)
(32) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n6995_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n69950)
repItems(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n9715_0))) → *4_0, rt ∈ Ω(n97150)
tail(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n10949_0))) → *4_0, rt ∈ Ω(n109490)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
active, proper, top
They will be analysed ascendingly in the following order:
active < top
proper < top
(33) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol active.
(34) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n6995_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n69950)
repItems(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n9715_0))) → *4_0, rt ∈ Ω(n97150)
tail(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n10949_0))) → *4_0, rt ∈ Ω(n109490)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
proper, top
They will be analysed ascendingly in the following order:
proper < top
(35) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol proper.
(36) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n6995_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n69950)
repItems(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n9715_0))) → *4_0, rt ∈ Ω(n97150)
tail(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n10949_0))) → *4_0, rt ∈ Ω(n109490)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
The following defined symbols remain to be analysed:
top
(37) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(38) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n6995_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n69950)
repItems(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n9715_0))) → *4_0, rt ∈ Ω(n97150)
tail(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n10949_0))) → *4_0, rt ∈ Ω(n109490)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
No more defined symbols left to analyse.
(39) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(40) BOUNDS(n^1, INF)
(41) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n6995_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n69950)
repItems(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n9715_0))) → *4_0, rt ∈ Ω(n97150)
tail(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n10949_0))) → *4_0, rt ∈ Ω(n109490)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
No more defined symbols left to analyse.
(42) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(43) BOUNDS(n^1, INF)
(44) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n6995_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n69950)
repItems(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n9715_0))) → *4_0, rt ∈ Ω(n97150)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
No more defined symbols left to analyse.
(45) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(46) BOUNDS(n^1, INF)
(47) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
zip(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n6995_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n69950)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
No more defined symbols left to analyse.
(48) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(49) BOUNDS(n^1, INF)
(50) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
pair(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n4579_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n45790)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
No more defined symbols left to analyse.
(51) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(52) BOUNDS(n^1, INF)
(53) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
take(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n2467_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n24670)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
No more defined symbols left to analyse.
(54) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(55) BOUNDS(n^1, INF)
(56) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
s(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1784_0))) → *4_0, rt ∈ Ω(n17840)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
No more defined symbols left to analyse.
(57) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(58) BOUNDS(n^1, INF)
(59) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
incr(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n1202_0))) → *4_0, rt ∈ Ω(n12020)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
No more defined symbols left to analyse.
(60) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(61) BOUNDS(n^1, INF)
(62) Obligation:
TRS:
Rules:
active(
pairNs) →
mark(
cons(
0',
incr(
oddNs)))
active(
oddNs) →
mark(
incr(
pairNs))
active(
incr(
cons(
X,
XS))) →
mark(
cons(
s(
X),
incr(
XS)))
active(
take(
0',
XS)) →
mark(
nil)
active(
take(
s(
N),
cons(
X,
XS))) →
mark(
cons(
X,
take(
N,
XS)))
active(
zip(
nil,
XS)) →
mark(
nil)
active(
zip(
X,
nil)) →
mark(
nil)
active(
zip(
cons(
X,
XS),
cons(
Y,
YS))) →
mark(
cons(
pair(
X,
Y),
zip(
XS,
YS)))
active(
tail(
cons(
X,
XS))) →
mark(
XS)
active(
repItems(
nil)) →
mark(
nil)
active(
repItems(
cons(
X,
XS))) →
mark(
cons(
X,
cons(
X,
repItems(
XS))))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
incr(
X)) →
incr(
active(
X))
active(
s(
X)) →
s(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
zip(
X1,
X2)) →
zip(
active(
X1),
X2)
active(
zip(
X1,
X2)) →
zip(
X1,
active(
X2))
active(
pair(
X1,
X2)) →
pair(
active(
X1),
X2)
active(
pair(
X1,
X2)) →
pair(
X1,
active(
X2))
active(
tail(
X)) →
tail(
active(
X))
active(
repItems(
X)) →
repItems(
active(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
incr(
mark(
X)) →
mark(
incr(
X))
s(
mark(
X)) →
mark(
s(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
zip(
mark(
X1),
X2) →
mark(
zip(
X1,
X2))
zip(
X1,
mark(
X2)) →
mark(
zip(
X1,
X2))
pair(
mark(
X1),
X2) →
mark(
pair(
X1,
X2))
pair(
X1,
mark(
X2)) →
mark(
pair(
X1,
X2))
tail(
mark(
X)) →
mark(
tail(
X))
repItems(
mark(
X)) →
mark(
repItems(
X))
proper(
pairNs) →
ok(
pairNs)
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
incr(
X)) →
incr(
proper(
X))
proper(
oddNs) →
ok(
oddNs)
proper(
s(
X)) →
s(
proper(
X))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
zip(
X1,
X2)) →
zip(
proper(
X1),
proper(
X2))
proper(
pair(
X1,
X2)) →
pair(
proper(
X1),
proper(
X2))
proper(
tail(
X)) →
tail(
proper(
X))
proper(
repItems(
X)) →
repItems(
proper(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
incr(
ok(
X)) →
ok(
incr(
X))
s(
ok(
X)) →
ok(
s(
X))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
zip(
ok(
X1),
ok(
X2)) →
ok(
zip(
X1,
X2))
pair(
ok(
X1),
ok(
X2)) →
ok(
pair(
X1,
X2))
tail(
ok(
X)) →
ok(
tail(
X))
repItems(
ok(
X)) →
ok(
repItems(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pairNs :: pairNs:0':oddNs:mark:nil:ok
mark :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
cons :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
0' :: pairNs:0':oddNs:mark:nil:ok
incr :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
oddNs :: pairNs:0':oddNs:mark:nil:ok
s :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
take :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
nil :: pairNs:0':oddNs:mark:nil:ok
zip :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
pair :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
tail :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
repItems :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
proper :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
ok :: pairNs:0':oddNs:mark:nil:ok → pairNs:0':oddNs:mark:nil:ok
top :: pairNs:0':oddNs:mark:nil:ok → top
hole_pairNs:0':oddNs:mark:nil:ok1_0 :: pairNs:0':oddNs:mark:nil:ok
hole_top2_0 :: top
gen_pairNs:0':oddNs:mark:nil:ok3_0 :: Nat → pairNs:0':oddNs:mark:nil:ok
Lemmas:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_pairNs:0':oddNs:mark:nil:ok3_0(0) ⇔ pairNs
gen_pairNs:0':oddNs:mark:nil:ok3_0(+(x, 1)) ⇔ mark(gen_pairNs:0':oddNs:mark:nil:ok3_0(x))
No more defined symbols left to analyse.
(63) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_pairNs:0':oddNs:mark:nil:ok3_0(+(1, n5_0)), gen_pairNs:0':oddNs:mark:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(64) BOUNDS(n^1, INF)